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ABSTRACT 

We review the relation between the two-dimensional Ising 
model in the critical domain and the free fermion field theory. 

The equivalence of the latter with the sine-Gordon model is 

used to compute corrections away from the critical temperature 

T . 
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I. INTRODUCTION 

Ever since Onsager's derivation of the free energy,the Ising 

model in two dimensions has remained a notorious problem in stat- 

istical mechanics. Lone aqo.Schultz,Mattis and Lieb2 have shown its 

equivalence with a free fermion gas in one-dimension.This analogy ca 

be used to compute its behavior in the critical domain characterized 

by T+T,, T, being the critical temperature, and p >> a , where 

a is the lattice spacing,and p a typical distance of interest. 

Furthermore, there is an intimate relation between one-dimensional 

relativistic massive fermions with or without four fermions 

coupling, and the sine-Gordon interaction of a Bose field. It 

turns out that departures from T=~ T 
C 

can be described by a 

mass term for the Fermi field. Hence the mass perturbation 

procedure developed by Coleman3 gives a mears to investigate the 

leading corrections. 

In part II we summarize the Hamiltonian, cr transfer matrix, 

formalism following reference. 2 The third part is devoted to 

the critical domain. We introduce two non-interacting Ising 

systems, in order to be able to describe them in terms of a 

complex Fermi field. The latter enables one to construct a charge 

current which is related to the gradient of a scalar field. This 

has the drawback of producing a spurious, continuous symmetry 

at the critical point: the chiral invariance of the charged 

massless field. Quantities of physical interest are insensitive 

to this degeneracy. 
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Mass perturbation is plagued by infrared divergences. A 

simple example allows us to understand the mechanism of an 

infrared cutoff. The first non-vanishing correction to the 

two-point correlation is found to agree with work done using 

the Toeplitz determinant methods. 4 We hope that further progress 

along these lines, will enable us to compute higher order cor- 

rections. It is gratifying to realize how much the statistical 

models have in common with relativistic field theories. Each 

domain can contribute to a better understanding of the other. 

II. HAMILTONIAN FORM 

A. The Ising Model 

At each site of a two-dimensional square lattice (of Size 

L) is attached a dynamical variable ai := k1 . The energy of a 

configuration is a sum of contributions of nearest neighbor 

pairs: 

Es - 3 z qv; 
Cij) 

Cl) 

The partition function is 

$ =-s+, -P {-& EC-1 1 = (2) 
c- - 

with 3 =%; - a natural measure for inverse temperatures. If 

a large lattice of N = L2 sites approximates the infinite one, 

we define the free energy per site (up to a factor - -!- ): 
ik#T 

F(p) = km 
N-PC- 

-pz 
(3) 
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and the correlation functions 

( Qr,q..q,> = t-’ 2: U&q. 4. . ..V& *P { s&vj\ (41 
W,:=fl 

Onsagerl was able to compute the function F(6) ,showing in 

particular that its second derivative is singular at the 

transition point Rc given by 

Aink a&= I b = 0.4+07.- (5) 
It is the purpose of the critical theory to investigate 

the singularity of F(3) and the behavior of the correlation 

functions in the vicinity of 3 = 3 . 
C 

For notational simplicity we shall, most of the time, take 

the lattice spacing a as a unit of length. 

B. Transfer Matrix 

The transfer matrix connects the configurations of successive 

rows of the lattice in such a way that for appropriate boundary 

conditions: 

2= trace 

The 2Lx 2L matrix v will be cast into the form exp - H , H 

being a hamiltonian appropriate for a unit step in an "euclidean 

time" direction. 

The set of row configurations is given a vector space 

structure in the following way. Orthogonal basis vectors are 

labelled by the values of L variables uk , and denoted 

I %, =a 2 “‘> =I. ’ 
This vector space can be identified with the L-th tensor product 

of a spin Ji , two-dimensional space, with a complete set of 
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operators 1, T~,T~,T~, where the T'S are Pauli matrices and 

r; la&v4 )...) QL> = Q* lq,ua,...,o;> . c71 
The transfer matrix V is factorized into 

\I= v,"a v= v,"z cw 

In this product, V 
1 

corresponds to the contribution of those 

terms in the energy which involve nearest neighbors along the 

same row: 

<ve,a;.-*r VLI V,l t-r;, 0: )... Jr:> = g,v; SW a' --- 6 
a.8 a vL,v; ~&wJ 

i.e., 

L/,= 9 ip f:‘:‘:*,\ = (9‘ 

We have adopted the convention thatcS+L=cS , implying 

periodic boundary conditions. The matrix "2 takes care of the 

coupling between rows: 

<Q,,Q+ ,..., QJ vp:,c$ )..., o;l> = +Jpy rt', , 
f 

where 
u2 is a two by two matrix given by 

(40) 

wI*~lv’> = cup {pro’) 

that is, 

Ja = 

In this last expression a* is defined by 

to& fF= Q+ i-w * 
( II‘ 

The fixed point of this transformation, B = a* , corresponds 

to the critical value 0, referred to in (5). Thus 

We factor out the explicit c-number in (12) which gives a regular 

v contribution to F , and perform a - 
a. 

rotation around the y-axis 

in the Pauli-spin % space for later convenience. Thus we write: 
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Z= QH~ {.$&aAinkap] hce WL 

LJ=: w,‘h wa w,“a 

W ‘= ““Pie g r: zLy+,) 

The original variables C rc 
5 

correspond now to the operators 't S. 

C. Jordan-Wigner Transformation 

The Jordan-Wigner transformation is designed to change 

spin operators into fermion ones as follows. Let 

tf= ‘/a c t”* i zY) 
such that 

\c+,q= I, lz' ,z=\ = 0 ) p+,r-l= 22 . 

These anticommutation rules are characteristic of Fermi 

statistics, however c t operators referring to distinct sites 

commute. 

Fermi operators can however be constructed as 

c, = ~pI;ll$'Z~t;~ t', 

+ 
c, = 

satisfying 
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pr, ceq = 14, c-q = 0 

The inverse transformation reads 

t; = up 1 in ijETc~cs] cr 

r+, = 94 ,- “s sp:, ilr Iyc c 

from which it follows that: 

t: tr:, = ce+, +q) rra;lr c+ c, 1 cc',,t &I) = (c'r -'r)(c'+,+cqJ ('! 

and 

Tc': = a c+,c, -I. 06) 

In terms of fermion operators Wl and W 
2 are exponentials of 

quandratic forms 

\"I, = aq 5 g f cc+,) cc",+, +%+A ) 

Wa' 
(‘7, 

A Fourier transformation takes care of translational invariance 

if one sets: iqr 

c, = L-l'3 z e 
9 

9 
9 

where the momentum q 2H takes discrete values of the form q= = P, 

p-co, *I, -.. ,+I& 

19q,3qo = If, $1) '0 
In terms of these variables 

Since (18) is unitary 

This expression was normal-ordered and we used the fact that 

~qcaq=o . Similarly z c';% =r,9Qq * 

In the infinite lattice limit the mode at q = 0 plays a 
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negligible role for fermions. Thus: 

w,= e”p i~~r,,,ccaqc7~7q+~‘)_()+i~q~~3:-~~)1\ 
Wa= cxp if iL -aPv$e C3+1$+7>X.j) } 

D. Diagonalization 

The expressions (19) are suitable for a diagonalization 

of w . Indeed operators referring to different values of 

positive q commute, and the problem is reduced to the study 

of four by four matrices acting on the states 

10) ) I-447 = q); lo> , Iq> = !+a 

where IO) 

) I-q>= Qo>, 

is the vacuum for the q and -q modes. 

In terms of these states, the relevant operators are 

represented as 

l 
00 

7;9q = O’ 
0 

I 
01 

9&q = 
00 
o 

0 

) 

?&= 

00 

O’ IO 

00 ( 0 

*“, 

01 1 

0 o 

= 

0 1 ,TqQ; ( y”, 0 0 1 

These expressions exhibit the further reduction to a non- 

trivial problem in the two-dimensional subspace spanned by the 

vectors lo> and I-q,q) . In the iq>,l-q>, subspace 

the contribution to W is simply the diagonal matrix 

w 

ao> 

“p aCg-q-p*1 . (al) 
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In the IO>. +q,q’, subspace we make use of auxilliary Pauli 

m.atrices V*Uy I ,wz (not to be confused with the original Q- 

variables) with the correspondence 

I-V 
Qq , 9,~-q * d 

2 

9,7-, -3 *EY yr,q - yvy . 

The corresponding contribution to W is the two by two 

matrix UY 

.wq= up ~a(pe:"s"l,:",~ wp{- pw-n] 4#tpvv'j *P\-p+ , (aa) 

with the same factor as appeared in (211 and a unit vector n with 

components n,=O, h*=S+, ha= -9 . With the help of the 

following definitions (for q 7 0) of Eq>O and hs 

cash at u-k2pv - Ain&.ap &p*ubq= u&#I,~ 

SinCap L4*2pv- cel42p sinL2p*mq = SinG%Sin($+q) “’ 

Aink a(3* Sinq = AinR Eq CM (t~)~+q) 

the expression for d reads 

*q=ue~2(s~q-~~)-Es(sinqu2+~~quy) . (24) 

In this subspace Q z stands for l-')<9,-9Tq3-9 and e Y 

for -; (9,9-s-9z,vi) . Both combinations vanish in 

the Iq7, \-q) subspace. 

Combining these results for the & 
a 

positive q values 

we obtain 

a= Q& g>,eq ktqc?@4-!pJ -;-d,bq7+tyQ\\ (25) 

The final step in the diagonalization amounts to a 

dogolioubov canonical transformation, to new fermion operators 
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f, 5; and given by 

leading to 

I4 = e'p-H = "p\-z,~c~~~,+Qq - I)\ ) (a71 

and H describes an assembly of free fermions with "energy" 

‘9 . 
E. Free Energy and Correlations 

The free energy F involves the computation of trace WL . 

Only the largest eigenvalue of W contributes in the limit 

L+ m provided it is non-degenerate, which is the case for 

B# ac . In turn this means that only the 1 -vacuum state 

survives in the limit as it is the lowest eigenstate of H . 

Henceforth brackets will denote averages in this state. Then 

from (13) 

F = ; h GhfLqp) + #&mm L-‘ZqM Eq . 

In the infinite L limit the discrete sum is replaced by 

an integral according to 

Consequently we obtain Onsager's expression in the form 

F = 1 Qn C~.&nR+) + & ferdq fq , 

with e given implicitly by (23). 

f#fS* an: Eq &alp-p*\ 

As long as p#fg, , then 

, which means that the vacuum is an 

isolated point in the spectrum. As p+f% the energy gap goes to 
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zero and the infrared region becomes predominant in the calculation 

of physical quantities. 

We shall concentrate our attention here to the two-point 

correlation at "equal time", meaning along the same row. As we 

expect an isotropic behavior close to the critical point, this 

is not a serious limitation in this case. 

Let r < r' refer to points on the same row; the thermal 

average <a,~~,, is given in terms of a (5) vacuum expectation 

value as , 

<verr.> = C Cc',+ C,) %tup \ irr c'C:c, 1 CC’,8 + C,, ) ) 

= <(CT -C,) 'SIpi &‘c;c~~ <c"c, +c+)> - 
ec 

Due to the anti-commutativity of the c's the right hand 

side operators are hermitian. Even though the underlying 

dynamics has been brought to the simple form (27) which means 

that the vacuum has a simple structure, the computation of 

correlations seem to involve complicated expressions in terms 

of fermion degrees of freedom. 

III. CRITICAL REGION 

A. Expansion Near 8 = Rc 

Close to (&zg, , singularities appear involving long range 

correlations. The discrete nature of the lattice is washed out 

in the large distance behavior of correlation functions,and 

continuous euclidean invariance is restored in this limit. We 

set 
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g = gc - 
where in units of the 

I 

1 

leading order 

attice spacingmal, and from ( 11) to 

(301 

Here m>oCm<o) corresponds to TW TC CTeTc) . 

Only long wavelength with respect to the lattice spacing, i.e., 

small q , are of interest. Thus it is legitimate to expand 

7 
near 9 =o . From (23) 

d+q" . b') 

This is the relativistic dispersion relation with the 

identification of )n) with the fermion mass. From the relations 

(23) we also find in this approximation 

Ain c& = (34 

which allow us to write W in the form 

W=erp-H = q+ ~>y@q+Q~-‘, +~q~ql~-~&& (3a: 

We still keep discrete values for q , recalling that in the 

large L limit and the transition 

from discrete (9,~)') to continuous ($,v+) fermion operators 

amounts to: 

Tq = kg 3q 
(33) 

the continuous operators fulfill anticommutation relations with 

s- function replacing Xronecker X's . 

A quantity that can immediately be computed is the 

singularity of the specific heat, i.e., the second derivative 
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of F. We call A F the departure of F from its value at 

p=p > excluding the regular % In a&i&a 

AFc”j=~L.~q(~-q) 
f 

piece. Hence 

= -$& iml + OCm’) ) (341 

which shows the logarithmic singularity of the specific heat. 

At e=& the mass m is equal to zero, which implies 

+, 
=o . Using (26) the diagonalization of the Hamiltonian is 

performed through 

7q= k “% (5,-Q 3_,= eY? ($,,+5;) (35) 

The original fermion operators Crcan then be written 

c,= e 2g+ (+,+h+g 

with 

(36) 

qp)= j+ piq;, .Q.+$)~~~ jq (e’& +;4’f,‘)&, 

Llr;cI‘, = A 2 &l!s’f4 -“~rq) ‘+ f’~(d’y$r,f-Jo(+) (Y” 
IL q<o -IT 

Indimensional units the limits of integration are 

zr 
& and can be replaced by+- when no ultraviolet divergences 

are encountered. The hermitean fields+, and $X are the two 

components of a relativistic Majorana spinor field, 5. if we allow 

for Minkowskian time development 

LpCr,t) = P qJCr) e-y 

which leads to 

9, Cr, t> = * Cr-t) yaw = (r; Cr+U - @S) 
If we define the following $ matrices 
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aoz go+, (p;) f’= lP+= (9 ;) rS Gf Sol’= 

y,q = a$“” g-= +, ,901,3ao=o @) 

the field + satisfies the Dirac equation 

;g.qJ= 0 (90 

In the discrete version + satisfies ordinary anticommutation 

rules 

v!P~ $p" 3 = SMb Xrp' 3 

and its equal time Wightman functions are 

<+p) (c;W17 = t*Crl+aCr’>>* =A 
I-Q 

ilr(v-r’) . 
c +- 

r-r’ 

X+,(r) kCr')> = 0. 
*C-r’) (42) 

AS long as the spacing is kept finite we find from (42) that 

((ix>= c+;(r)> = $ . 
-, 

The limiting form i[Zlr(+-r')) is only 

valid for large separations,and is then identical with the 

result obtained using continuous field theory. 

B. Two-Point Correlation Function at the Critical Point 

To express the two-point correlation function in terms of 

+ we observe that since 
. 

ilfC+C 
e = I-ac+c = (AC) cc+-c) 

one can rewrite (29) as 
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(43) 

where from (36) 

c++c= *+L& = &) c+-c= i&-k) 4’ (44) 

In the continuous limit 

< & p ct> c-a ,I)= WC,+ ,I) 

This means that if we use another set of fields 
Y 

isomorphic to $I we also have: 

cqrr4> = 16: VT+, d*f,, vq+= --- e:, ‘4‘24 7 
The reason for introducing a second set of Majorana fields 

is the following. The aim is to construct a complex Dirac 

massless field which allows the existence of non-vanishing 

currents. These currents are the appropriate gradients of 

scalar massless fields. Calculations with the latter are 

greatly simplified. This trick is related but not equivalent 

to the method used in Ref. 6 and 7. 

We letrp and + anticommute and introduce the common vacuum 

for both fields. The square of the correlation function reads: 

<VrVr#7’~ < qc; q(+:*, . ..p. p > ( q(* Q(- . . . cp 42, i - (46) 

= c-l)f < (4; &; c;:, yy’;)(;{,lJ,;:- (qy&P), 

where 4 =rir . If J and K denote the combinations 

J= p p 
(47) 

they satisfy 
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3=3+ u=lC+ J= KL \ 

hence iE (3-l) 
Yrr: et 

izr(K-I) 
K= Qa 

This allows one to write 

We note a boundary effect: the first K and the last 

J are not paired. However this can be neglected in the limit 

f -,- as a careful study shows using the determinantal 

expression for the correlation. For our purposes we can write 

<ooopj=eup { iz , &+Q)f 7 f (48) 

With D standing for the complex Dirac massless field 

D = ++;(p > 144) 

we recognizthat J+K 
2 

is the space component of the charge 

current j : 

+ cJ+K) = +( $-‘++‘+ #+‘y’-‘) -’ +-,‘f, -\cz’&) 

= o;D,- D;D, = ii U’D = 4’. 
(So) 

From Klaiber's work8 it is known that in the continuum 

limit the current 'IJ 
d can be expressed as the gradient of a 

free massless field 
* with a suitable infrared regularization. 

To conform to standard normalization we write 

.r & 01, 
The infrared regularization is irrelevant for ay . 

We need the equal time two-point function of H . This is 

related to the one for as follows 
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&> &‘(‘9 > = < ~,(r)~,cI~>a+ <4p+pJ>z 
-I I I 62) =-- = -- 
2 79 (r-r”)‘L 

3 a &-r’, 
a+ brbrl . 

Inside the logarithm Ir-v\ could be multiplied by any mass p 

without affecting the result. Thus we set 

< +Cf) +cf')> = i+ 9h pl rLrl . ($3) 

This is quite a natural definition. Indeed consider a massive 

sclar field in two-dimensional space-time. In the euclidean 

region if tJ / stands for the mass and if r and r' are two- 

dimensional vectors the Wightman function car 1 be written: 

cl% =iur-r'J 

<lr)= *=+ p 
= +.. k, C p'lr-r'l) , 

with kc0 the modified Bessel function given for small ac by 

k,[x) = - @$+I) + oC~‘~‘-) * 
If we assume that f'+o and if we set PJ= , the 

uniform approximation for Ir-r'le$ is indeed given by (53). 

Approximating sums by integrals as L Jo0 , and using (51) we 

see that 

The exponentials commute for pfo but they require a multiplicative 

renormalization. 3 This means that we do not try to compute the 

absolute normalization of the correlation function. Thus we 

replace @'(Bg';(r' by 

The : : mean Wick ordering with respect to the mass Y'= 2pc -6 

of a massive scalar field in the limit)I+o which amounts to 

zse (53) as the two-point function. Our definition, slightly 
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different from Coleman's, 3 implies that ,(eg 3 is given 

the effective dimension 

Further calculations are always understood in the limity40 . 

In this way Wick's theorem yields 

( de ‘k,Hw JT e;f&va F& 
. . . > = y z&:Ir,( r(rJ-YCL\) =lr 6s: 

This contains a factor p +r , and hence vanishes if 

It follows at once that,up to an unknown constant factor, 

set equal to one for convenience 

&ro~f,‘, < de iJii$U d p&f9 > 

= f - ‘4 

It is known in general that the correlation function is positive 

(Griffith's first inequality); consequently one can take the 

square root of (58) and one finds: 

<To ap, = f -“4 

C. Mass Perturbation 

Below Tc (m<o) , the Ising system develops a spontaneous 

magnetization. This means that for m<.o fixed, and f --+Q , 

the correlation function tends to a finite limit, equal to the 

square of the magnetization. We shall however investigate a 

different limit such that P -)co ,m+o butm f remains finite. 
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Under such circumstances the spontaneous magnetization vanishes 

and: 
(644 

where the + or - sign refer respectively to Cn>o or m<O, and 

F+)=l . 

We shall only attempt to compute the leading correction to 

F* (t) for t small, using mass perturbation. 

To illustrate the care required to deal with such a 

perturbation and its infrared singularities,let us first treat 

a simple example. Assume for the moment ln >o and express the 

Hamiltonian given in (32) 

in terms of the Majorana field stands for 

CI, = -; ;L Id’ ‘3: W$( 
-i+n Id’ ql 6’l# . w -In= 

The mass term occurs with an unconventional -iv S matrix 

but this does not play any significant role here. Having 

introduced two uncoupled fields+ and y , the total 

Hamiltonian is: 

H(q) t II(y) = Sdr adcr, b, 

The Hamiltonian density x expressed in terms of the 

complex Dirac field D, reads: 

$g= &$+%e, %d,= -;Ea'a,0 at,=-;miia%. 63) 

To derive (61) and (63) we have used a Fourier analysis of D 

adapted to the mass zero case 
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D,Cr) z L 
Gr 5 c ‘9 Qi4rQq + diqr b+q) e(q) 

Lo,(r) = +plca 

iqr 

9 - 
e-iqv b’s) et-q) . 

If stands for the operators pertaining to the field 
-U, 

s 
and 

% 
are their continuous version, then of course 

cLq= +c&+iiQ k's+' *&+; f;+, 

satisfy the ordinary anticommutation rules. The choice of (64) 

as a Fourier analysis seems inappropriate for the massive theory. 

Indeed a canonical Bogslioubov transformation can be performed 

from a's and b's to A's and B's adapted to massive fermions. 

From (63) the Minkowskian time evolution of D is governed by 

the Dirac equation 

-i & D(r,t) = Sdr’ ~%(~;t), D(Ct)] 

f i C Ss $ DIr,t) + m t’ Dh,t)) 

Explicitly 

(&+&)D,= -D, 

& -$, D,= -mDi 

implying of course the Klein-Gordon equation a' .e& +m') D=,, 
at. ar= 

Let u and v be the positive and negative energy solutions 

of this Dirac equation in momentum space 

*c(q) = c 2w w+q,fh 1 ) ym ‘t(q) = u(qf&rG+ (69 

normalized to 1&,(%(U,\z, \$f*s\x= 1 and reducing in the 

zero mass limit to 
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“cql - e(S) 
m+0 ( ) 

wl) 
4 at-q) 

*q) - 
?)r+0 1 1 i W-q) 

as should be the case. The corresponding massive fermion field 

denoted by a superscript m is 

D-L) 3 & ids c eiqrAtq) A, + e’;‘**w 8: ) (63) 

The equal-time Wightman function for this field is an average 

computed in a vacuum state satisfying As lo>% = Bq lo>* = o, 

and is found to be 

< Dzcr) D;+Cfl,> = A m 2ll 5 *& e 
iq(erJ w*q in 

(68) 
-;m w-q 

As *n+o,+r-~'1 finite we find with C ~2 Q.' : 
a 

do,“(r) D; trl,, *= ($f+&;*)+(~~~~ yyq 

The first term is of course the mass zero value <D,,tr) DC<@)> 

and the correction term is of order m lnm. It would 

seem that perturbation theory in m is in trouble. However 

the origin of the ln m factor lies in an infrared singularity. 

If we assume the existence of an infrared cutoff of order m in 

momentum space,or' 
m 

in configuration space,we should be able 

to recover from perturbation theory that to lowest order 

S< D,W $03, = o 
-is 4sC’mf 

km encmf 0 
I* 

Let us now see if this idea works. The interaction picture 

Gell-Mann-Low formula tells us that 

(6% 

< D:cqoj D;+&o]>~ = 
<TDaOplD~(r~o)tip$ -i [d$&O)]> 

< Q’p \-; pphn~3~~ > 
(70 
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On the right-hand side we use massless fields and a Minkowski 

space formula. Since we are computing an equal-time Wightman 

function which does not distinguish between real and imaginary 

time, this should not make any difference. The time evolution 

of the massless field is simply given by (39) so that the 

propagators are 
1 

<-r D,C*> o;(y)> = $v y L$- (JP-yO)t\-k) 

<-rDaC) D;bcy,> = -$ 
I 

It’-3’ + ~*eyoqc~-ia) 

and <T$Cx) OTQ)) vanishes. With & ,,,given by (63) rsatisfying 

d&), =o ' we find to lowest order 

s < D&,0) Dt, (60)) = -m Id’, <T D&.,D+&e) k&W)> s (I21 

Applying Wick's theorem we see that this implies 

s < D6 Cr, o) 0: ((0) > = 0 

in agreement with (69); while for instance (73) 

6 <D4cr,o)D~~~:o)>= J m d$<Tr$r,o)&j,e y+)D;b,, 
(74) I =‘k 

(ZP 1 J d3’ dj 
(r-j’+aO(l-i&)) C$-r’+ %bl’-ie) 

The 3" integral is readily evaluated by contour integral methods 

and with f = 1 C.-V\ we obtain, in configuration space, the 

logarithmic infrared divergent integral: 

8< D,cc,o) Di Cr:o)> = k c$$ - (75) 

This is exactly what was expected and we supply an infrared 
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I 
cutoff by replacing the upper limit of integration by - 

Cm 
where, of course, the constant C is here unknown. Then 

6<D,(r,0)D$Cr;o)>=;(1) k h =-&.&Cmf 

1. 
(76) 

zvl w Fortunately we thus reproduce the exact result given in (69). 

Thus mass perturbation works, at least to lowest order, with 

an infrared cutoff, and we feel confident to apply the same 

method to the Ising correlation function. 

D. First Order Correction to the Correlation Function 

In (58) we wrote the correlation function as an expectation 

value of a product of non-hermitian fields JL i JTi ~c.~Je-;q'r' 
. 

It is clear that we could have used their hermitian conjugates. 

Furthermore the formula would have been insensitive to a shift 

of SJ by a constant amount 8 , reflecting the spurious chiral 

degeneracy, introduced by the use of a complex Dirac field. The 

latter arbitrariness is fixed by requiring the vacuum to give 

a vanishing expectation value and using instead of (58) the 

equally good choice 

< q2’ = a < dAi* &~+.oB dfaAfi+Cf)> ("1 

From (57) we see that the added terms do not contribute in 

the limit v-0 . This choice however commits us to a choice of 

perturbing Hamiltonian %n in terms of H . Coleman's work3 

enables one to translate the massive Thirring model into a sine- 

Gordon model. We have here the special case corresponding to a 

free massive Fermi field and thus in Coleman's notations the 

appropriate coupling constant satisfies Thus to express 
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%n = -im 5 rso s im (z c+‘- 9’) 

z C+> = D;co, +, 3c p+>t C79) 

in terms of all that is necessary is to find the correct 

normalization. The Minkowskian time ordered products can be 

rotated in the complex time plane (rotation -E 1 to yield 
2 

euclidean averages. For instance 

< z'+'cx, r '-'CJ, > 
=&m+ -&a ' 

(80) 

while for instance from (57) 

< de 
iGi OI) 

+ dfe 
-iGG QjW , = 1 

I H-y\2 
(81) 

Similar relations can be written for strings of Z'S or 

exponentials of H- Thus we have the identification of ~@(Jc] 

with &- 3 e 
i\Isi; gC*) up to a phase and thus 

adjusting the phase to e i/r 
> 

we find 

%,= 

The choice of phase is dictated by a classical argument 

requiring the positivity of energy,and we assume for the moment 

?n>o . The corresponding Lagrangian for the H field reads, 

using Lorentz variables and renormalized fields: 

%cCi$)= * :(b4,rr,)':+ % J&&m 6c-j + jCIL)LAosAF*W .@3 _ 
The source j (x) is coupled to ci-*g, the effective 

field of interest and hence plays a role analogous to a magnetic 

field. From (55) we recall that the dimensions are 
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dim @hoaz%~) s ’ 

&m (NAAJI$) t ‘/9 > 

so that (83) is dimensionally correct but presupposes a vanishing 

dimensional parameter p . The latter could possibly be related 

to a multiple of m . 

The equivalent of the Gell-Mann-Low formula in euclidean 

space time is 

Since 

a <dhh fi&‘) &d=~ tr) “b (-sd\ 86 la){ > 
_~ _ 

t0 lowest order 

--Q17; = <%9,” + 6 <pD+ 
ScO,a,,L= ‘22 sd’a <J-JiF~te, &AtE*(, wfixm G 3 (3)) lr 

L - g fI/’ Sd2% ,,,‘,)-c, 
In the last expression z and 

P are two-dimensional vectors. 

Using an infrared cutoff of order 'kh\ ( for instance in the 

translational invariant form,- -c 
-cm\,-Jcl 

I&, T ')-Jr, 
) we readily 

find 

s<yr$L rnfV4 Cmp P Ca.rf>'mp h Chf (81) 

Consequently 

<u--u~~ = 3 “4 ( t + & mf Qn ClWf + --a ) l W 

It turns out that (88) is also valid for m<O . We can see this 

as follows. In the absence of source and for m positive,the 
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minimum of energy as derived from (82) and (83) is at $E=o > 

and the source term drives it to a value in the vicinity of this 

point. This in fact justifies our choice of coupling to 

Sin** rather than say C&Se& . This was no innocent 

choice for the m lnm correction as it would have amounted 

to a change of sign. For mto this analysis fails. To 

recover a positive energy a finite shift +b*q 

is necessary. This we can realize by keeping the previous choice 

of gd, with m replaced by Iml, and shifting 6bfi$ to 

cos 4ii$ (up to an irrelevant sign) which as we said changes 

the term klmlf & CIM~ into its opposite. Hence (88) 

holds for Mao and coincides with the value quoted in Ref. 4. 

It can also be noted that lowest order mass perturbation 

yields the correct singularity of the specific heat already 

obtained in (34). Indeed the denominator of (85) can be interpreted 

as .L”P $ La2 AWm)) = <up $- Jd) aem @I] 7 @s) 

The factor L2 is expected here from translational invariance 

while the factor 2 arises from the two non-interacting Ising 

systems. Thus to leading order 

AF 

t m2 
8s S !a * eo> 

I’)@ 
To make sense of this expression we need both an infrared cutoff 

and an ultraviolet cutoff \%I > A , a 

being the lattice spacing taken as unity. Thus 

AF = -22 &hl + OCmz)j 
+lr 
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in agreement with (34). This is a check on the consistency of 

this approach. 

IV. CONCLUDING REXWIZS 

The derivation of the critical theory of the Ising two- 

dimensional model as described by the Laqranqian (83) has been 

straightforward even though here and there a sleight of hand 

was necessary. Actually if another method than mass perturbation 

is to be used, it would seem preferable to modify the 

renormalization prescription involved in the &symbol with its 

dimensional parameter v . Perhaps as is suggested from the 

soliton theory one should keep p finite and related to m in 

such a way that the soliton mass, identified with the fermion 

one, be equal to m. The complete calculation of the two- 

point function for any value ofmf given in Ref. 4 could then 

be interpreted as solving the quantization problem of the sine- 

Gordon theory for the particular coupling= . It seems 

likely that the soluble two-dimensional models of the Baxter 

type have a critical theory described by a Thirrinq model6 or 

equivalently by a sine-Gordon equation with interaction 

proportional to -SF3 . The leading corrections to their 

scaling behavior could therefore be computed. Also one should 

investigate higher-order correlation functions. It is unclear 

whether our trick of replacing an exponential by a sine function 

remains valid. It should also be remembered that higher correlation 

require unequal time calculations. 



-28- FERMILAB-Pub-75/57-'EiY 

ACKNOWLEDGMENTS 

One of the authors (C.I.) is happy to acknowledge the 

hospitality of the Fermi National Accelerator Laboratory, 

where this work was completed. He has benefited from 

stimulating conversations with M. Bander. 



-29- FERMILAB-Pub-75/57-THY 

.REFERENCES 

1 
L. Onsaqer, Phys. Rev. e, 117 11944). 

2 T.D. Schultz, D.C. Mattis, E.B. Lieb, Rev. ?4od. Phys. 2, 

856 (1964). 
3 S. Coleman, Phys. Rev. Dll, 2088 (1975) - 

4T.T. Wu, B.En. MC Coy, C.A. Tracy and E. Barouch, to be 

published. 

'B. Berg, B. Schroer "Two-Dimensional Ising Model and Scale 

Invariant Field Theory",Freie Universitat Berlin preprint, 

May 1975. 
6 A. Luther, I. Peschel "Calculation of Critical Exponents in 

Two-Dimensions from Quantum Field Theory in One-Dimension", 

Aarvard University preprint, May 1975. 

7R.A. Ferrel, Journ.Stat. Phys. 5, 265, (1973) 

8B. Klaiber in "Quantum Theory and Statistical Physics", 

University of Colorado Lectures in Theoretical Physics, XA 

(1967), edited by A.D. Barut and W. Britten - Gordon and Breach. 


